BLADYG: A Graph Processing Framework for Large Dynamic Graphs
نویسندگان
چکیده
Recently, distributed processing of large dynamic graphs has become very popular, especially in certain domains such as social network analysis, Web graph analysis and spatial network analysis. In this context, many distributed/parallel graph processing systems have been proposed, such as Pregel, GraphLab, and Trinity. These systems can be divided into two categories: (1) vertex-centric and (2) block-centric approaches. In vertex-centric approaches, each vertex corresponds to a process, and message are exchanged among vertices. In blockcentric approaches, the unit of computation is a block, a connected subgraph of the graph, and message exchanges occur among blocks. In this paper, we are considering the issues of scale and dynamism in the case of block-centric approaches. We present bladyg, a block-centric framework that addresses the issue of dynamism in large-scale graphs. We present an implementation of bladyg on top of akka framework. We experimentally evaluate the performance of the proposed framework.
منابع مشابه
A Distributed Framework for Large-Scale Time-Dependent Graph Analysis
In the last few years, we have seen that many applications or computer problems are mobilized as a graph since this data structure gives a particular handling for some use cases such as social networks, bioinformatics, road networks and communication networks. Despite its importance, the graph processing remains a challenge when dealing with large graphs. In this context, several solutions and ...
متن کاملGraphIn: An Online High Performance Incremental Graph Processing Framework
The massive explosion in social networks has led to a significant growth in graph analytics and specifically in dynamic, time-varying graphs. Most prior work processes dynamic graphs by first storing the updates and then repeatedly running static graph analytics on saved snapshots. To handle the extreme scale and fast evolution of real-world graphs, we propose a dynamic graph analytics framewor...
متن کاملOn Querying Historical Evolving Graph Sequences
In many applications, information is best represented as graphs. In a dynamic world, information changes and so the graphs representing the information evolve with time. We propose that historical graph-structured data be maintained for analytical processing. We call a historical evolving graph sequence an EGS. We observe that in many applications, graphs of an EGS are large and numerous, and t...
متن کاملAn Efficient Similarity Search Framework for SimRank over Large Dynamic Graphs
SimRank is an important measure of vertex-pair similarity according to the structure of graphs. The similarity search based on SimRank is an important operation for identifying similar vertices in a graph and has been employed in many data analysis applications. Nowadays, graphs in the real world become much larger and more dynamic. The existing solutions for similarity search are expensive in ...
متن کاملA Framework of Filtering, Clustering and Dynamic Layout Graphs for Visualization
Many classical graph visualization algorithms have already been developed over the past decades. However, these algorithms face difficulties in practice, such as the overlapping node problem, large graph layout and dynamic graph layout. In order to solve these problems, this paper aims to systematically address algorithmic issues related to a novel framework that describes the process of graph ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Big Data Research
دوره 9 شماره
صفحات -
تاریخ انتشار 2017